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Abstract--I  have programmed a three-dimensional finite-element model to spatially integrate distributed strains. 
The mathematics is based on Cobhold and Percevault (1983). The method finds the pre-strain configuration 
of a region by unstraining rectangular prisms into parallelepipeds, then rotating and translating them iteratively 
to minimize the interelement deviations. A numerical singular-value decomposition calculates the necessary 
rotations and the final cycle of further strains to make a best fit of the elements. The deviation of elements from 
holes formed by their nearest neighbors indicates the degree of compatibility of strain measurements. 

The program reproduces the rotations required in examples with analytic solutions. Even though only a single 
horizontal layer of elements is used, the fitting procedure correctly calculates rotations in all three dimensions 
from the constraints of strain compatibility. 

Three-dimensional strains measured in an Archean greenstone belt of northeastern Minnesota were integrated 
using a layer of nearly equant finite elements. Rotations calculated from the pre-tectonic configuration accord 
with field observations of fabrics indicating variable amounts of shear. Rotations about horizontal axes are 
minimal, precluding large vertical shears. An estimate of 40% true horizontal north-south shortening across the 
belt can be made from the undeformed configuration. 

INTRODUCTION layer of nearly equant orthorhombic parallelepipeds 
forms the finite-element array. The input data comprise 

IT IS rare to be able to measure the complete deforma- three-dimensional strain measurements for each ele- 
tion a rock has undergone. Generally only the distor- ment. The elements are unstrained, translated and 
tion (strain) is measurable. Any rigid-body rotations, rotated in all three dimensions to achieve a best-fit. This 
translations or dilations can only be inferred in special method has the advantage of using all of the available 
cases where we have more knowledge of the rock's strain data, rather than using projections of ellipsoids 
undeformed configuration. Even rarer is a continuous onto a single plane for a two-dimensional fitting pro- 
sampling of a deformation field. Usually, strain can be cedure. Strains can be integrated from any deformed 
specified only at distributed locations on a single surface, rocks with strain markers, on all scales from outcrop to 
subject to outcrop availability and presence of suitable orogenic belt. 
strain markers. The strain data also contain measure- The computational method will be described first, 
ment errors and a variability inherent in complex rock concentrating on my implementation, with clarifications 
systems which cannot be quantified except in a statistical of Cobbold & Percevault (1983). Examples are shown 
manner, for which the program reproduces rotations which are 

Cobbold & Percevault (1983) proposed a finite-ele- independently specified by equations in three dimen- 
ment method for integrating spatially distributed strain sions. Finally, a natural strain distribution is used to 
measurements subject to these constraints. Using this illustrate the program's utility. 
method, a pre-tectonic configuration can be calculated 
for the rocks, which facilitates differentiation of tectonic 
models and unraveling structural complexities. The cal- 
culated rotations indicate regions which underwent rota- FINITE-ELEMENT METHOD 
tional deformations relative to the bulk field. An itera- 
tive best-fit procedure gives a measure of the overall Element co-ordinates 
compatibility of strains. Departures from perfect com- 
patibility indicate measurement errors, inhomogeneous My strain integration program is based on the theory 

of Cobbold & Percevault (1983). Consequently their dilations, or excessively separated datum locations rela- 
tive to the variation in the strains, notation is employed where applicable. Deformation is 

I have implemented Cobbold & Percevault's method specified by the transformations 
on an IBM PC-compatible microcomputer. A single z = z(Z) (1) 

and 
*Current address: Department of Geology, Colorado College, Colo- 

rado Springs, CO 80903, U.S.A. Z = Z ( z ) ,  (2)  
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Y = M-lz ,  (3) 

co I where M-1 is a symmetrical 3 × 3 matrix with constant 
components in the global Cartesian co-ordinate system. 

Strain measurements are usually reported as principal 
strain values and orientations. In the principal-axis co- 
ordinate system of an element, with measured principal 
stretches Si, M -1 becomes a diagonal matrix M - r  with 
the reciprocals of the Si on its diagonal. The measured 
principal axis orientations can then be used to define a 
direction cosine matrix to transform M -1' to M -1 in 

I~) Cartesian co-ordinates. This tensor transformation is 
valid because M -1 is a particular form of F -1, the defor- 

~ 1 ~ ~  mation gradient tensor. 
z63 z,4 Strain ellipsoid determination methods such as Z5 2 Z4.1 

PASE5 of Roberts & Siddans (1971) calculate up to six 
Fig. 1, Numbering system for boundary points Z. Elements are viewed solutions. If the principal axis orientations are averaged, 
from the top in the +z3 direction, the bottom surfaces are patterned, the axes may not be quite orthogonal. The axes can be 
(a) Deformed configuration. The subscript specifies the global index of orthogonalized by holding the best constrained axis 
the point. (b) Undeformed configuration. The second subscript 

specifies the local corner of the globalboundarypoint, fixed ($1 = maximum elongation for constrictional 
strain, $3 for flattening). For $1 fixed, $2 is rotated within 
the S~-$2 plane until it lies in the plane normal to S~. $3 is 
found by taking the vector cross-product of $1 and $2, 

where z and Z are the Cartesian vector co-ordinates of a 
material point in the deformed and undeformed states, which also ensures the axes form a right-handed system. 
respectively. The mathematics presented here is valid In practice, the adjustment of the two less well-con- 
for an array of elements in all three dimensions. How- strained axes is generally less than 5 °. This orthogonali- 
ever, since strain measurements are generally only avail- zation may be avoided if Owens's (1984) best-fit ellipsoid 
able on one surface, in the program a single layer of determination is employed. 

orthorhombic parallelepipeds constitutes the element 
array in the deformed state. The elements are also Element-hole deviation 
parallelepipeds in the undeformed state, with boundary 
points def inedbyZ.  After the elements are unstrained, the distance 
• A global numbering system is established for bound- between face centers of adjacent elements is minimized. 

ary point co-ordinates z, as well as a local system for each An equivalent process is to minimize the deviation 
element. Boundary points shared between elements in between elements and the hole defined by their nearest 
the deformed state no longer coincide in the undeformed neighbor elements. Let Y* be the boundary points of the 
state, so another index is needed in the global co- hole. Then the deviation, ~ ,  is defined as 
ordinate array to specify the 'corner' of the global bound- 1 (--, 3 
ary point (Fig. 1). ~ = _ ~ [y ,  _ y[2 = ~ (y~ _ Yl)2, (4) 

The program finds the undeformed configuration of n 1 I=1 
the elements by calculating a sequence of intermediate where n is the number of boundary points and the bar 
states Y. The array elements are first unstrained indicates an arithmetic mean (Cobbold & Percevault 
homogeneously, then translated, and finally rotated to 1983). An element with eight corners occupies a hole 
optimize the overall fit. (As used here, 'unstrained' defined by four nearest neighbors with 16 boundary 
refersonly to the removal of the distortionalcomponent points. A new hole with eight boundary points is 
of the deformation.) Each of these steps transforms the specified by the vector means of pairs of adjacent bound- 
element boundary points to a new state, ary points (Fig. 2a). The deviation is the same for both 

holes, so the new hole is used in the following. 
Unstraining A problem arises when an element lies on an edge or 

corner of the array. The hole it occupies is incompletely 
Usually only the distortion of a rock is measurable, specified. For an edge element with three nearest neigh- 

The distortion to be removed is specified by the recip- bors, a smaller hole is defined as shown in Fig. 2(b), and 
rocal of a strain measurement in that element. (Details only the inside half of the element is used in the fitting 
of how these strains are specified for both simulated and procedure. The edge centers of the neighboring edge- 
natural examples are included in sections below.) This elements are the outer boundary points of the hole. For 
irrotational strain is assumed to be homogeneous in each a corner element with two nearest neighbors, only the 
element. The state with the distortion removed is inter- inner quarter of the element is used for fitting. Six of the 
mediate between z and Z, and is defined by Y, the hole's boundary points are formed by the edge centers 
boundary point co-ordinate vectors. For the conditions and inner corner means (Fig. 2c). The remaining two 
of a homogeneous, irrotational strain, we have outer corners are projections outward such that the 
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" ~ ~ ~  the unknown rotations, we first need to define 

oYt = Y I -  YI, (6) 

where the o subscript symbolizes the deviation of a 
, component from the mean value and the Y components 

are for the intermediate state following translation B. 
For a rotation tensor, RIj, rotation of a rigid element in 
a stationary hole is expressed by 

oZ~ = oY~, (7) 

and oZ1 = RII oYj 

(Cobbold & Percevault 1983, equation 14). If (4) is 
regarded as the deviation in the final state, with Y 
variables replaced by Z, then substituting (7) into (4) 
yields 

3 3 _ _  3 3 

~b = E - ~  + E (oii1) 2 - 2 E E R,j oY; oYj 
1=1 l I J ( 8 )  

(Cobbold & Percevault 1983, equation 15). 
Only the last term of (8) is affected by rotation. In 

Fig. 2. Construction of element holes. Thin solid lines connect corners terms of matrices, RIj oY~ oYJ can be viewed as a scalar 
of nearest neighbor elements defining the hole. Solid circles are product, R:Y' ,  where R is the matrix of components 
corners of hole (see text for definition). Open circles are comers of RIj and Y' is the matrix of components oY~ oYj. From 
element portion to be fitted in the hole. Dotted lines bound the hole. 
(a)Elementwithfournearestneighbors.(b)Elementonanedgeofthe Malvern (1969, equation 2.4.25b), scalar products 
array with only three nearest neighbors. (c) Element on a comer of the behave as 

array with only two nearest neighbors. 
R:Y' = tr(R T. Y'), (9) 

planes bounding the top and bottom of the hole are where the right-hand term is the trace of the tensor 
parallelograms, product of R-transpose and Y'. To minimize D, R. Y' 

The procedure for fitting elements into their holes is must be maximized because the first two terms of (8) are 
analogous to the modified Euler method for approximat- invariant with respect to rotation. The trace of a tensor 
ing curves by line segments (Cobbold & Percevault is maximum if the tensor is symmetric (Cobbold & 
1983). Here, by minimizing the distances between face Percevault 1983) so we need to find R such that R T. Y' is 
centers of elements, I essentially start with the line symmetric. Y' may be decomposed into a product of 
segments through the element centroids, then fit them orthogonal and symmetrical matrices O and S, that is 
together end-to-end. By defining edge and corner holes 

Y' = O-S. (10) as above, the centroid of the element to be fitted is 
analogous to the endpoint of the modified Euler curve. Therefore, to make R. Y' symmetric and maximum, R 
The segment is only projected inward from the centroid, needs to satisfy 
When the deviation, ~ ,  is minimized, the face center 
distances will also be minimized. R T" O = I, (11) 

where I is the unit tensor. R is orthogonal, so from (11), 
Translations R = O. (12) 

As Cobbold & Percevault (1983) have shown, rigidly Determination of the rotation matrix now reduces to 
translating the element in its hole until their vector finding O in the decomposition of (10). A singular value 
means coincide minimizes ~ with respect to translations, decomposition (SVD) for general symmetric matrices 
For the state Y (distortion removed), the translation (Nash 1979) can be used to find O, and will be shown to 
vector, B, is given by be useful in other applications below. Decomposing Y' 

with the SVD gives 
B I = Y; - III. (5) 

Y'= u - s .  v v. (13) Adding B to the element boundary points yields a new 
intermediate state Y, where Y*// = Yr. U and V are orthogonal matrices, and S is a diagonal 

matrix composed of the singular values of Y'. The 
Rotations columns of U and V, respectively, are the left and right 

singular vectors of Y'. O rotates the columns of V into 
Rigidly rotating the element about its centroid does those of U (Malvern 1969, pp. 176-177, DePaor 1983, 

not affect the previous minimization step. To solve for equation 79). 
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In (7) the II/are known, the Zj  are to be calculated, so be indicated by differential dilations of the opposite 
using (12), the overall goal is to find O, where sense during the further strain step. 

If we begin with an intermediate state after the preced- oZ1 = Olj oi11. (14) 
ing fitting routine, the general deformation of the ele- 

Using equation (4.6.11) of Malvern (1969) with column ments is described by 
vectors and the SVD in (13), the rotations which 
minimize the deviations are oZ~ = oY~, 

O,j = VIKUjt <. (15) °ZI = DH oYj (16) 

Rotations and translations are performed for each (Cobbold & Percevault 1983, equation 16). 
element sequentially. Their holes include elements Substituting (16) into (4) (with Z variables in (4) 

describing the final state) and minimizing yields already fitted. After the entire array is fitted, the process 
is initiated again, continuing iteratively until the sum of D1K(oYK oYj) = oY~ oYj. (17) 
adjustments in the last cycle is negligible. A total rota- 
tion matrix for each element can be saved by left-multi- Equation (17) is summed on K only to form nine equa- 

tions for the nine unknown Dzx. plying the cumulative rotation by the rotation matrix at 
each step. Let Y' be the matrix composed ofoYK oYj. The SVD is 

To speed the process, a 'fast-packing' step precedes used to invert Y'. If 
the iterative-packing, as suggested by Cobbold & Per- Y' = U-S • V T, (18) 
cevault (1983). The hole for an element is only specified then 
by the inner nucleus of elements already packed. For an y , - i  S-1. U T 
element on the edge of the nucleus, a hole is projected = V. (19) 
outward from the single packed element it borders. (Nash 1979). Because S is diagonal, calculation of(19)is 
Because the position of the outer face of the hole is not straightforward through 
constrained, after the element is fitted in the hole it is 
translated again until its inner face center adjoins that of Sii -1 = 1/Sii, (20) 
the packed element. Corner elements are done last, and and the orthogonality of U and V. Then 
their holes are projected outward from the two packed 
elements they border (Fig. 2c). DIK = (°Y~ °YJ)(°YI °YK)-I' (21) 

The program uses arrays comprising both the packing If the elements are only allowed to dilate, with 2 the 
order of the elements and their outward-facing direc- dilation, then 
tions during both the fast-pack and iterative-pack cycles. 3 / 3  
The facing directions tell the program which neighboring 2 = ~ (oY~ o1"i ) / /~  (oYl) 2 

elements are to be used to define the hole. i (22) 
Convergence is measured by both the sum of element- (Cobbold & Percevault 1983, equation 20). 

hole deviations and the change in that sum from the The principal values and orientations of the further 
preceding packing cycle. The program halts when the strains are calculated with the SVD. If ~ is the further 
change falls below some preset tolerance. The sum of strain matrix, then 
the deviations correlates with the compatibility of the 

D =  U . S . V  v (23) 
elements. Unfortunately, it is difficult to quantify that 
relation. The deviation sum need not be zero for a S has the principal values on its diagonal, the columns of 
complex strain field, even if the strains are perfectly U are thevectororientationsofthe correspondingprinci- 
compatible. This departure reflects the approximations pal axes in the deformed state, and the columns of V are 
inherent in the underlying numerical methods. As noted the principal axis orientations in the undeformed state 
by Cobbold & Percevault (1983), the deviation sum will (Shore & Duncan 1984). The rotation component, R, of 
be zero for strain fields described by polynomial co- the deformation is 
ordinate transformations of order 2 or less (see examples 
below). Rtj = U,I<Vj~ (24) 

(Malvern 1969, equation 4.6.11 modified for column 
vectors; DePaor 1983, equation 79 in component form). 

Further strain and rotation During the further strain-fitting, all of the elements 
are fitted into the holes calculated by the iterative pack- 

After the translation and rotation steps, the elements ing routine, rather than sequentially fitting an element, 
can be strained further for a better fit. Large strains then defining a new hole based on it for the next element. 
so determined indicate a lack of compatibility in the In this way, the further strains are insensitive to the 
measured strains, which could be due to measurement fitting order. Because iteratively packed holes are 
errors, an excessively coarse element grid relative to defined by the mean of boundary points of adjacent 
changes in the strain field, discontinuities in the strain elements, further strains calculated with them ensures 
field, or unknown heterogeneous dilations across the that the elements approach each other with minimum 
field. Differential dilations during the deformation will gaps or overlaps. 
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(a) 

~ Z  2 

Fig. 4. Init ial finite-element array of 48 cubes viewed in perspective in 
the + z3 direction. Top surfaces of the elements are outl ined in bold. 

This array represents the deformed state. 
Fig. 3. Construction of holes for further strain step. Symbols as in 
Fig. 2. (a) Element  on an edge of the array with only three nearest 
neighbors. (b) Element  on a corner of the array with only two nearest 

neighbors, lines. In figures showing horizontal (Zl or z2) views, the 
viewpoint is located relative to the middle of the row or 
column displayed, and the bottom surfaces of the ele- 

Holes for edge and corner elements need to be defined ments are hatched. A mainframe computer generated 
differently for the further strain calculations. If a hole is the element plots using a three-dimensional graphics 
specified as in Fig. 2(b) or (c), the outer boundary points program. 
of the hole lie on the adjacent elements. An element The plots resulting from the fast-packing step are 
further strained to fit this hole will overlap the adjacent shown with rotations suppressed. Rotations calculated 
element when it too is further strained in the hole by the program are shown diagrammatically bycompar- 
defined by the first element, ing these plots with those following the iterative-packing 

To make the face centers of edge and corner elements cycles. 
coincide after further strains, their holes are specified as For the artificial strains, an isochoric deformation is 
shown in Fig. 3. The holes' outer boundary points are the specified with equations (2). The Cartesian co-ordinate 
means of midpoints of the adjacent edges of the fixed axes zl, z2 and z3 are oriented north, east and down (into 
element and the element to be strained. This procedure the page), respectively. The reciprocal deformation gra- 
can be criticized on the grounds that the element to be dient tensor F -1 is given by 
strained partially determines its hole, but in the absence 
of further information, this seems to be the best FIj -1= OZt/Ozj (Ij = 1, 2, 3). (25) 

approach. The principal values and orientations of the strain can be 
found from F -1 for the co-ordinates of each element's 
centroid with the SVD. These data constitute the pro- 

EXAMPLES WITH ANALYTICAL SOLUTIONS gram's input. 

Figure 5 shows the results for a one-dimensional 
Transformation equations such as (1) and (2) can be inhomogeneous simple shear (plane strain), with 

used to describe a strain field. To test whether the maximum shear strain y = 2 at the center of the field. 
program reproduces the rotations calculable from the For this deformation, the reverse deformation transfor- 
equations, they were solved for finite strains for the mation, (2),is 
co-ordinates of the element centroids in the deformed 
state. These data formed the program input. The corn- Z~ = zl, 
puter then calculated the rotations and translations, Z2 = 0.04167z 3 - 2Zl + z2, (26) 
which indeed matched those found by solving the equa- Z3 = z3 
tions. 

and the reciprocal deformation gradient tensor is 

Examples Ii O i ] 
F -1 = .125z~ - 2 1 . (27) 

Figure 4 shows the initial finite-element array compris- 
ing a single layer of 48 cubes. This array represents the 0 
deformed state. The succeeding figures all show the This deformation is analogous to a shear zone with no undeformed state. In Figs. 4-11 the arrays are viewed deformation in the wall rocks. For this relatively simple 
from above in a perspective projection with the view- example, the elements fit together perfectly in the unde- 
point distance approximately 4 times the maximum formed state after iterative packing (Fig. 5b). 
dimension oftheplot. Thus, parallel element boundaries Figure 6 shows the results for two-dimensional 
appear to converge downward (i.e. in the + z 3 direction), inhomogeneous simple shear with the shear in the nega- 
The top planes of the elements are outlined with bold tive z3-direction (normal to the plane of the elements). 
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Fig. 5. Results for simple shear in one-dimension (z2-direction), representing a plane strain shear zone (equation 26). Shear 
increases from y = 0 at the zone boundaries to ~m~ = 2 at the center. Diagrams are for the undeformed state. (a) 
Configuration of elements after unstraining and translations ('fast-packing' with no rotations). (b) Elements after 

iterative-packing. Rotation of elements is illustrated by comparing (a) with (b). 

(o) (d) 

D' D 

C O' 

Fig. 6. Results for shear in the vertical (z3) direction with a superimposed pure shear parallel to the co-ordinate axes 
(equation 28). (a) Elements after fast-packing with no rotations. Axes as in (b). (b) Elements after iterative packing. 
(c) View in the +zl direction showing the element row marked C-C'.  (d) View in the -z2 direction showing the element 
column D-D' .  In (c) and (d) the elements are hatched on the surfaces facing the viewer which correspond to the lower (+z3) 

surface in (b). 
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In addition, a pure shear has been superimposed. The A' 
reverse deformation transformations are (a) 

Z 1 -~- z1, 

Z 2 = 1.5z2, (28) 
Z 3 = 0.33z~ + 1.69z 2 + 0.67z3 

and the reciprocal deformation gradient tensor is I 
/ 

i: 0 01 F -1 = 1.5 0 . (29) zl 

0.67zl 3.375z2 0.67 a 

The deformation in (29) can be viewed as separate ~ z2 
B' events of shear and shortening, as in Coward & 

Potts (1983). The forward pure shear (plane strain) has 
a stretch of 0.67 in the z2-direction and a stretch of 
1.5 in the z3-direction. For shear preceding shortening, 
(29) corresponds to a forward deformation with shear 
strains of 7z3zl = -0.67zl and 7z3z2 = -z2 for shear in the 
zlz3 and z2z 3 planes, respectively. For the case of shorten- (b) . . . . / ~ ~ . . . . ~  
ing preceding shear, the shear strains are ~'z,< = -Zl and 
7z3z2 = -2.25z2. 

Figure 6(a) shows the elements after fast-packing, 
with all of the elements still in the qz2 plane. The 
elements converge to a perfect fit in Fig. 6(b). The outer 
elements in this figure appear smaller because these 
elements have moved in the positive z3-direction to form 
a domed surface on the perspective projection. Figures 
6(c) & (d) are horizontal views through the array. Even (c) : ~ ~ : : ~  / q  ;, 
though there is only one layer in the array, the strain B , I ~  ~ ~za 
compatibility requirements allow the program to cor- ~*===~-- ~ a 

rectly compute the necessary rotations in all dimensions, 
rather than just rotations about vertical axes. 

Figure 7 shows the results for a more complex defor- 
mation which cannot be described simply in terms of (d) ~¢=<:~:~ 
pure or simple shear. The reverse deformation transfor- Zl Z 2 

m a t i o n s  a r e  B ~ ~ \  
Z] = z] - 0.15z~ + 0.2ZlZ 2 -- 0 . 6 7 z 2 2 ,  ~ 
Z2 = -0.225z21 + 0.3ZlZ2 + z2 - 0 . 1 z  2, (30)  ~ B '  

Z 3 = 0. l z  2 Jr 0 . 0 2 z  3 + 0.2z 2 + z3 Fig. 7. Results for the deformation in equation (30). (a) Elements after 
iterative packing. (b) View in the + q  direction showing the element 

and the reciprocal deformation gradient tensor is row marked A-A ' .  (c) View in the -z2 direction showing the element 
column B-B' .  (d) View directed midway between the + z] and + z2 axes r(x _0.3z1 + 0.2z2)(0.2Zl_O.X33z2)il s h o w i n g t h e e l e m e n t c o l u m n B - B ' . I n ( b )  a n d ( c ) t h e e l e m e n t s a r e  

F -1 1 ( - 0 . 4 5 z  1 + 0.3z2) (1 + 0 . 3 z  I - 0 .2z2) hatched on the surfaces facing the viewer which correspond to the 
= • lower (+z3) surface in (a). In (d) the bottom hatched surface faces 

L ( 0 . 2 Z  1 + 0.06z 2) 0.4Z 2 toward the viewer at B and away from the viewer at B'. 

(31) 

The element edges are not coincident in Fig. 7 because Higher-grade granitic rocks occur to the north and south. 
of the cubic term in (30). But the face centers coincide as The late-stage, dextral strike-slip Vermilion fault forms 
they should for a good fit. Figures 7(b)-(d) show hori- the northern boundary. Fabrics indicate much of the 
zontal views through the undeformed array, again illus- deformation resulted from ductile dextral shear, espe- 
trating the proper rotations in all three dimensions, cially in the northern part of the region where the 

Vermilion fault is probably the latest, most brittle 
expression (Hooper & Ojakangas 1971, Sims 1972, 1976, 

NATURAL EXAMPLE Hudleston 1976, Ela & Hudleston 1985, Hudleston et al. 
1986). 

The Vermilion district of northeastern Minnesota lies Competent greenstone and iron-formation cores a 
in an east-west-trending Archean greenstone belt of major antiformal structure in the east (Fig. 8). Surround- 
low-grade metasedimentary and metavolcanic rocks, ing volcanic metagraywackes and slates show more 
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F 
Location 

I I Map/M i r l n . ~  5km '1 

.'x, / 
• . 

• • .... 

. • I . .  

Gw-SI Gst I I 

Fig. 8. Initial array of 21 elements for the Vermilion district (represent- I I  -G' 
ing the present, deformed state). Dots represent sample locations G- ~-- 
where a strain measurement was made. General geologic contacts -" 
shown, with rock units: Gw-Si--metagraywackes and slates; IF-- 
interbedded iron formation and mafic metavolcanics; Gst--mafic zAz, 
metavolcanics, dominantly pillow basalts. The Vermilion Fault is I ~,Iza 

labelled VF. i' 
F' z2 

Fig. 9. Array of Fig. 8 after unstraining and fast-packing with no 
intensive folding and strain fabrics. Measured strains rotations. Dashed lines F-F' and G-G' mark element columns and 
vary across generally parallel, ENE-trending bands, rows shown as horizontal views in Fig. 10(b) & (c). 
The largest measured strains are consistently near the 
Vermilion fault, and they are predominantly of flatten- 
ing symmetry. Constrictional strains occur to the south, information about the strain measurements and their 
with a mixed zone in between. Maximum shortening (23) interpretation will be presented elsewhere. 
directions plunge shallowly north or south. Maximum Figure 9 shows the array after unstraining and fast- 
elongations plunge 30--60°E for constrictional samples, packing (with only translations allowed). Elements in 
but plunge more steeply east or west in the flattening the top two rows are elongate, correlating with the 
zone (Ela & Hudleston 1985). measured flattening strains. Conversely, the bottom-left 

Relief in the Vermilion district is negligible relative to elements are shorter, reflecting constrictional strains. 
the areal dimension, allowing a planar approximation of The elements are arranged in straight columns, consis- 
the glaciated ground surface. A full three-dimensional tent with dominant N-S shortening and a subhorizontal 
array of elements could be used in other areas where the 23 orientation. 
relief exposes a sufficient number of horizontally and Figure 10 displays the elements afteriterative packing. 
vertically distributed sample localities. The method dis- Elements 17, 10 and 13 have rotated anticlockwise about 
cussed above can be easily extended to such an array, vertical axes in Fig. 10(a) when compared to Fig. 9. 

Forty-seven strain measurements have been made in These elements lie near the present Vermilion fault. 
rocks at 45 distributed locations across the Vermilion Their rotation presumably reflects the northward- 
district (Fig. 8). A division of the area into 21 nearly increasing dextral shear evidenced in the rock fabrics. 
equant or thorhombicelements  represents the deformed The aspect ratios of elements 16, 9 and 2 show the 
state. This configuration of elements was chosen to progressive increase in measured flattening strains to the 
maximize the number of elements, each of which con- north. Elements 3 and 11 rotated sinistrally when com- 
tains at least one strain measurement.  In elements con- pared with Fig. 9. This rotation may correlate with the 
taining multiple measurements,  the strains were matrix general dextral shearing along the northern boundary of 
averaged. The measured (or averaged) strain represents the region, or with rotation around the relatively rigid 
the strain in the entire element. The program converges core of greenstone to the southeast concomitant with the 
faster and more reliably for approximately equant ele- N-S shortening deformation. The elements on the left 
ments, further constraining the choice of element side of Fig. 10 (a )have  strained with relatively little 
shapes. Due to limited outcrop, more evenly and closely rotation. 
spaced sample localities were not accessible. Therefore  The horizontal views of Fig. 10(b) & (c) indicate that 
a systematic investigation of the influence of element the array was relatively planar in the pretectonic con- 
shape and size on the undeformed configuration could figuration. No large local rotations are observed about 
not be attempted. Most of the strain data derive from horizontal axes, as would be the case for shear off the 
similar rock types. Strain measurements used as input flanks of a rising diapir. Isoclinal folding of the bedding 
did not vary consistently with lithology. More detailed is pervasive, so there is no way to infer the original 
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Fig. 10. Array of Fig. 9 after iterative packing. Numbered elements are referred to in the text. (a) View in the +z 3 direction. 
(b) View in the -z2 direction showing elements along line F-F' in Fig. 9. (c) View in the +z I direction showing elements 

along line G-G' in Fig. 9. 

orientation of an entire element in space. Therefore, the compensate for deviations in strain compatibility 
bulk rotation of the array during deformation is indeter- between adjacent element. More strain measurements 
minate. However, large rotations about a horizontal axis allowing smaller, more numerous elements would prob- 
of a rock body that is some 25 km across after shortening ably improve the fit in this area. Elements composing the 
are unlikely, so a reasonable, if not exact, measure of lowest complete row show consistently negative dilation 
horizontal shortening can be found by comparing the values. Because measured strain ratios are normalized 
N-S dimension of the arrays (measured between ele- to no volume change in the deformed state, negative 
ment centroids) in Figs. 8 and 10(a). A shortening value dilations needed to improve fit in the undeformed state 
of 40% is indicated, assuming no volume change, may indicate a volume loss during straining. 

Figure 11 shows the undeformed configuration after Overall the elements show reasonable strain compati- 
further straining with dilations only allowed. Individual bility, especially considering the large size of the ele- 
dilations in the top three rows of elements appear to ments relative to the samples from which the strains 

were measured. The largest dilation values in Fig. 11 
occur in the outer edge elements, where the holes are 
poorly constrained, so they are not as significant as those 
in the central region. 

CONCLUSIONS 

i Cobbold & Percevault's (1983) finite-element method 
for integrating strains has been programmed for a 

zAzl single horizontal layer of three-dimensional elements. A 
singular-value decomposition efficiently calculates the 

z3 necessary rotations and further strains. The program 
z2 
- reproduces the translations and rotations when they are 

independently specified by deformation transformation 
equations. Rotations in all three dimensions are accu- 

I rately computed from the constraints of strain compati- 
bility. Integration of strains measured at distributed 
locations in northeastern Minnesota shows the utility of 
the program for calculating a pretectonic configuration 
for deformed rocks. The calculated rotations accord 
with field observations of fabrics indicating variable 
amounts of subhorizontal dextral shear. Rotations in the 

Fig. 11. Elements of Fig. 10 after a further step allowing dilations only vertical direction are minimal. The amount of shortening 
to improve element fit. Numbers in elements are dilations relative to across the greenstone belt in the (present) N-S, horizon- 

elements in Figs. 9 and 10 (0 indicates no dilation), tal direction is 40%. 
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